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An expedient synthetic route for 3-aryl �-carbolin-1-ones
was developed starting from ethyl acetamidocyanoacetate
and chalcone derivatives. The five- and six-membered
nitrogen-containing rings in the �-carbolin-1-ones were
elaborated efficiently by an intramolecular ketone-nitrile
annulation and an intramolecular N-arylation of amide
respectively.

β-Carbolin-1-ones have served as important intermediates for
the preparation of complex alkaloids 1 and are found to possess
potent bioactivities on the central nervous system.2 The first
report that derivatives of β-carbolin-1-one (1) with alkoxy
subsitituents on the A-ring could inhibit colon and lung tumors
appeared in patent literature in 2001.3 Subsequently, we found
that 3-aryl-β-carbolin-1-one (2) and analogues inhibit the
proliferation of HeLa cells with IC50 values in the low micro-
molar range. Moreover, aromatic substitution on C3 in 2
proved to be essential for their biological activity.4 The facile
synthetic route to various derivatives of 2 disclosed here thus
makes it possible to probe the structure and activity
relationship for the carbolin-1-one family of alkaloids (Fig. 1).

To date, two practical strategies have been adopted to
construct the skeleton of β-carbolin-1-one. One is to build
pyridone rings by using acid- or palladium-catalyzed intra-
molecular cyclization of indole-2-carboxylic acid amides,3,5 or
intramolecular Heck reaction of 3-iodoindole-2-carboxylic
acid amides.6 The other is to modify the corresponding tricyclic
precursors, such as dehydrogenation of polyhydro-β-carbolin-
1-ones,1a–b or oxidation of β-carbolins to yield the corre-
sponding N-oxides followed by a thermal rearrangement.1c–d

Since the most suitable tricyclic precursors were obtained
mainly from indole derivatives,7 both strategies rely upon, to a
great extent, the use of a few indole derivatives directly
or indirectly as common starting materials, including indole-
3-ethanamine, indole-2-carboxylic acid, 3-iodoindole-2-
carboxylic acid or 3-iodoindole-2-carboxylaldehyde. For our
purpose to synthesize 3-aryl β-carbolin-1-one (2), those
methods suffered from either inaccessible starting materials or
elaborate multi-step syntheses.

A number of lactams are readily prepared by the ketone–
nitrile annulation 8 and the intramolecular N-arylation of

Fig. 1 β-Carbolin-1-ones with antitumor activities.

† Electronic supplementary information (ESI) available: NMR and
experimental details. See http://www.rsc.org/suppdata/ob/b4/b406046f/

amide can be achieved using palladium 9 and/or copper() as
catalysts.10 Herein, we report an expedient three-step synthetic
route for 3-aryl β-carbolin-1-one (2). As shown in Scheme 1,
the route starts from Michael addition of ethyl acetamido-
cyanoacetate (3) to chalcone (4) to afford a key precursor 5
with an efficient introduction of two nitrogen atoms. Then
an intramolecular ketone–nitrile annulation of 5 yields di-
hydropyridone 6. Finally, Cu() catalyzed intramolecular
N-arylation of amide 6 affords the target compound 2.

In the literature, ethyl acetamidocyanoacetate (3) has rarely
been employed as a nucleophilic donor in Michael addition
reactions and one of its nitrogen-containing groups has often
been “wasted” in other uses.11 When we treated the mixture of 3
and 4a with a catalytic amount of t-BuONa (10 mol%) at room
temperature for 2 h, the desired adduct 5a was obtained in 75%
yield. Under similar conditions, the addition of 3 to other
chalcones 4b–i yielded the corresponding adducts 5b–i in
60–75% yields (Table 1).

The intermediate 5 can be further elaborated by two possible
pathways. One is to build the indole ring first by an intra-

Scheme 1 The preparation of 3-aryl β-carbolin-1-ones (2). Reagents
and conditions: a. ethyl acetamidocyanoacetate (3), cat. t-BuONa, THF,
rt, 2 h; b. aq. HCl–HOAc, rt, 7 h; c. (1) CuI, NaH, DME, reflux, 7–10 h;
(2) 10% NH4OH, 2 h.

Table 1 The preparation of compounds 5, 6, and 2

4,5,6,2 R  R1 Ar 5 6 2

a H  H C6H5 75 80 68
b H  H 4-ClC6H4 73 77 67
c H  H 4-MeC6H4 65 67 70
d  OCH2O  C6H5 67 84 60
e  OCH2O  4-ClC6H4 75 81 64
f  OCH2O  4-MeC6H4 74 76 62
g MeO  MeO C6H5 65 88 65
h MeO  MeO 4-ClC6H4 72 80 72
i MeO  MeO 4-MeC6H4 60 80 60
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molecular N-arylation of amide, and the other is to construct
the pyridone ring by an intramolcular ketone–nitrile annul-
ation. Unfortunately, 5a did not offer any indole product in
an intramolecular N-arylation of amide catalyzed by Pd(OAc)2/
P(o-tolyl)3/Cs2CO3

9b or Pd(OAc)2/DPEphos/Cs2CO3
9d at

100 �C in toluene for 10 h, while the chalcone 4a was recovered
almost in quantitative yield. A control experiment revealed
that this result arose from the retro-Michael addition of 5a
catalyzed by Cs2CO3.

Although the acid-catalyzed ketone–nitrile annulation of 5a
with H3PO4–P2O5

8b–c or EtOH–H2SO4
8a,d did give 6a as white

crystals, the low yields (24–46%) were obtained due largely to
the poor solubility of both starting material and product in the
solvent used. However, we found that a good yield (80%) of 6a
can be obtained easily by standing the mixture of 5a in aqueous
HCl–HOAc at room temperature for 7 h. Using the same pro-
cedure, compounds 5b–i were converted to the corresponding
products 6b–i in 67–88% yields (Table 1).

To our disappointment, an intramolecular N-arylation of
amide 6a catalyzed by Pd(OAc)2/P(o-tolyl)3/Cs2CO3

9b failed.
Instead of the target product 2a, it gave ethyl 4-(2-bromo-
phenyl)-2-pyridone-3-carboxylate (8) in 85% yield (Scheme 2).
Since the same result was also obtained without Pd(OAc)2

and P(o-tolyl)3, the formation of 8 must result from a Cs2CO3

promoted elimination of acetamido group, which has been
shown to be a good leaving group under basic conditions.12

Fortunately, when compound 6a was treated under improved
Goldberg reaction conditions (CuI/NaH/DMF at 90 �C for 2h),
the desired product 2a was obtained in 20% yield. By varying
the reaction conditions, the best result (68%) was obtained by
refluxing the mixture of 6a/CuI/NaH (1 : 2 : 4 by mole) in DME
(ethylene glycol dimethyl ether) followed by work-up with 10%
aq. NH4OH. Under similar conditions, 6b–i were converted
into the corresponding 2b–i smoothly in moderate yields (60–
72%, Table 1).

Since 3-acetamido-4-(2-bromophenyl)-6-phenyl-2-pyridone
(9) was captured and it can be converted into 2a with CuI/NaH,
therefore, this novel one-step conversion of 6 to 2 actually was a
tandem reaction sequenced by the cleavage of the ester, a
decarboxylation–aromatization and an N-arylation of amide.
CuI played a critical role both in the initiation step to cleave the
ester and in the end step to promote the intramolecular
N-arylation of intermediate 9 to give target compound 2
(Scheme 3).

In summary, a novel preparation of 3-aryl β-carbolin-1-one
was developed. Ethyl acetamidocyanoacetate (3) was employed
as a nucleophilic donor in a Michael addition reaction for
efficient introduction of two nitrogen-containing functional
groups to the adduct 5. Then a very mild intramolecular
ketone–nitrile annulation of 5 gave the desired pyridone
intermediate 6 conveniently. Finally, the indole ring was
assembled efficiently by an intramolecular N-arylation of
amide 6 catalyzed by CuI to yield target compound 2.

Scheme 2 Cs2CO3 promoted elimination of acetamido group.

Scheme 3 CuI initialized tandem reaction.
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